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Abstract

We show that standard algorithms for anisotropic diffusion based on centered differencing (including the recent sym-
metric algorithm) do not preserve monotonicity. In the context of anisotropic thermal conduction, this can lead to the vio-
lation of the entropy constraints of the second law of thermodynamics, causing heat to flow from regions of lower
temperature to higher temperature. In regions of large temperature variations, this can cause the temperature to become
negative. Test cases to illustrate this for centered asymmetric and symmetric differencing are presented. Algorithms based
on slope limiters, analogous to those used in second order schemes for hyperbolic equations, are proposed to fix these
problems. While centered algorithms may be good for many cases, the main advantage of limited methods is that they
are guaranteed to avoid negative temperature (which can cause numerical instabilities) in the presence of large temperature
gradients. In particular, limited methods will be useful to simulate hot, dilute astrophysical plasmas where conduction is
anisotropic and the temperature gradients are enormous, e.g., collisionless shocks and disk-corona interface.
Published by Elsevier Inc.
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1. Introduction

Anisotropic diffusion, in which the rate of diffusion of some quantity is faster in certain directions than oth-
ers, occurs in many different physical systems and applications. Examples include diffusion in geological for-
mations [13], thermal properties of structural materials and crystals [5], image processing [11,4,9], biological
systems, and plasma physics. Diffusion Tensor Magnetic Resonance Imaging makes use of anisotropic diffu-
sion to distinguish different types of tissue as a medical diagnostic [2]. In plasma physics, the collision operator
gives rise to anisotropic diffusion in velocity space, as does the quasilinear operator describing the interaction
of particles with waves [16]. In magnetized plasmas, thermal conduction can be much more rapid along the
magnetic field line than across it; this will be the main application in mind for this paper.
0021-9991/$ - see front matter Published by Elsevier Inc.
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Centered finite differencing is commonly used to implement anisotropic thermal conduction in fusion and
astrophysical plasmas [6,10,14]. Methods based on finite differencing [6] and higher-order finite elements [15]
are able to simulate highly anisotropic thermal conduction (vi/v^ � 109, where vi and v^ are parallel and per-
pendicular conduction coefficients, respectively) in laboratory plasmas. ‘‘Symmetric’’ differencing introduced
in [6] is particularly simple and has some desirable properties: perpendicular numerical diffusion is indepen-
dent of parallel conduction coefficient vi, perpendicular numerical diffusion is small, and the numerical heat
flux operator is self adjoint. While in the symmetric method the components of the heat flux are located at
cell corners, they are located at the cell faces in the ‘‘asymmetric’’ method. The asymmetric method has been
used to study convection in anisotropically conducting plasmas [10] and in simulations of collisionless accre-
tion disks [14].

An important fact that has been overlooked is that the methods based on centered differencing can give
heat fluxes inconsistent with the second law of thermodynamics, i.e., heat can flow from lower to higher tem-
peratures. This accentuates temperature extrema and may result in negative temperatures at some grid points,
causing numerical instabilities as the sound speed becomes imaginary. Also, in image processing applications
it is required that no new spurious extrema are generated with anisotropic diffusion [11], making centered dif-
ferencing unviable.

We show that both the symmetric and asymmetric methods can be modified so that temperature extrema
are not accentuated. The components of the anisotropic heat flux consist of two contributions: the normal
term and the transverse term (see Section 2). The normal term for the asymmetric method (like isotropic con-
duction) always gives heat flux from higher to lower temperatures, but the transverse term can be of any sign.
The transverse term can be ‘‘limited’’ to ensure that temperature extrema are not accentuated. We use slope
limiters, analogous to those used in second order methods for hyperbolic problems [19,8], to limit the trans-
verse heat fluxes. For the symmetric method, where primary heat fluxes are located at cell corners, both nor-
mal and transverse terms need to be limited. Limiting based on the entropy-like function ð_s� � �~q � ~rT P 0Þ
is also discussed.

Limiting introduces numerical diffusion in the perpendicular direction, and the desirable property of the
symmetric method that perpendicular pollution is independent of vi no longer holds. The ratio of perpendic-
ular numerical diffusion and the physical parallel conductivity with a Monotonized Central (MC; see [8] for a
discussion of slope limiters) limiter is v^,num/vi � 10�3 for a modest number of grid points (�100 in each direc-
tion). This clearly is not adequate for simulating laboratory plasmas which require vi/v^ � 109 because per-
pendicular numerical diffusion will swamp the true perpendicular diffusion. For laboratory plasmas the
temperature profile is relatively smooth and the negative temperature problem does not arise, so symmetric
differencing [6] or higher-order finite elements [15] may be adequate. However, astrophysical plasmas can have
sharp temperature gradients, e.g., the transition region of the sun separating the hot corona and the much
cooler chromosphere, or the disk-corona interface in accretion flows. In these applications centered differenc-
ing may lead to negative temperatures giving rise to numerical instabilities. Limiting introduces somewhat lar-
ger perpendicular numerical diffusion but will ensure that heat flows in the correct direction at temperature
extrema; hence negative temperatures are avoided. Even a modest anisotropy in conduction (vi/v^ [ 103)
should be enough to study the qualitatively new effects of anisotropic conduction on dilute astrophysical plas-
mas [10], but the positivity of temperature is absolutely essential for numerical robustness.

The paper is organized as follows. In Section 2 we describe the heat equation with anisotropic conduction
and its numerical implementation using asymmetric and symmetric centered differencing. In Section 3 we pres-
ent simple test problems for which centered differencing results in negative temperatures. Limiting as a method
to avoid unphysical behavior at temperature extrema is introduced in Sections 4 and 5. Slope limiters are dis-
cussed in Section 4 and limiting based on the entropy-like condition in Section 5. Some mathematical prop-
erties of limited methods are discussed in Section 6. In Section 7 we compare different methods and their
convergence properties with some test problems. We conclude in Section 8.

2. Anisotropic thermal conduction

Thermal conduction in plasmas with the mean free path much larger than the gyroradius is anisotropic with
respect to the magnetic field lines; heat flows primarily along the field lines with little conduction in the
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perpendicular direction [3]. In such cases, a divergence of anisotropic heat flux is added to the energy equation.
Thermal conduction can modify the characteristic structure of the magnetohydrodynamic (MHD) equations
making it difficult to incorporate into upwind methods. However, thermal conduction can be evolved indepen-
dently of the MHD equations using operator splitting, as done in [10]. The equation for the evolution of inter-
nal energy density due to anisotropic thermal conduction is
Fig. 1.
cell fac
flux is
oe
ot
¼ � ~r �~q; ð1Þ

~q ¼ �~bnðvk � v?ÞrkT � nv? ~rT ; ð2Þ
where e is the internal energy per unit volume,~q is the heat flux, vi and v^ are the coefficients of parallel and
perpendicular conduction with respect to the local field direction (with dimensions L2T�1), n is the number
density, T ” (c � 1)e/n is the temperature with c = 5/3 as the ratio of specific heats for an ideal gas, ~b is the
unit vector along the field line, and rk ¼~b � ~r represents the derivative along the magnetic field direction.
Throughout the paper we use c = 2 to avoid factors of 2/3 and 5/3; results of the paper are not affected by
this choice.

We consider a staggered grid with the scalars like n, e, and T located at the cell centers and the components
of vectors, e.g., ~b and ~q, located at the cell faces [17], as shown in Fig. 1. The face-centered components of
vectors naturally represent the flux of scalars out of a cell. All the methods presented here are conservative
and fully explicit. It should be possible to take longer time steps with an implicit generalization of the schemes
discussed in the paper, but the construction of fast implicit schemes for anisotropic conduction is non-trivial.

In two dimensions the internal energy density is updated as follows:
enþ1
i;j ¼ en

i;j � Dt
qn

x;iþ1=2;j � qn
x;i�1=2;j

Dx
þ

qn
y;i;jþ1=2 � qn

y;i;j�1=2

Dy

� �
; ð3Þ
where the time step Dt, satisfies the stability condition [12] (ignoring density variations)
Dt 6
min½Dx2;Dy2�

2ðvk þ v?Þ
; ð4Þ
Dx and Dy are grid sizes in the two directions. The generalization to three dimensions is straightforward.
S i,j

qi+1/2,j+1/2

 i+1/2, j

 i,j+1/2

Vx,

Vy,

A staggered grid with scalars Si,j (e.g., n, e, and T) located at cell centers. The components of vectors, e.g.,~b and~q, are located at
es. Note, however, that for the symmetric method the primary heat fluxes are located at the cell corners [6], and the face-centered
obtained by interpolation (see Section 2.2).



126 P. Sharma, G.W. Hammett / Journal of Computational Physics 227 (2007) 123–142
The methods we discuss differ in the way heat fluxes are calculated at the faces. In rest of the section we
discuss the methods based on asymmetric and symmetric centered differencing as discussed in [6]. From here
on v will represent parallel conduction coefficient in cases where an explicit perpendicular diffusion is not con-
sidered (i.e., the only perpendicular diffusion is due to numerical effects).

2.1. Centered asymmetric scheme

The heat flux in the x-direction (in 2-D), using the asymmetric method is given by
Fig. 2.
shown
a cons
gives a
qx;iþ1=2;j ¼ �nvbx bx
oT
ox
þ by

oT
oy

� �
; ð5Þ
where overline represents the variables interpolated to the face at (i + 1/2, j). The variables without an overline
are naturally located at the face. The interpolated quantities at the face are given by simple arithmetic
averaging
by ¼ ðby;i;j�1=2 þ by;iþ1;j�1=2 þ by;i;jþ1=2 þ by;iþ1;jþ1=2Þ=4; ð6Þ
oT =oy ¼ ðT i;jþ1 þ T iþ1;jþ1 � T i;j�1 � T iþ1;j�1Þ=4Dy: ð7Þ
We use a harmonic mean to interpolate the product of number density and conductivity [7]
2

nv
¼ 1

ðnvÞi;j
þ 1

ðnvÞiþ1;j

; ð8Þ
this is second order accurate for smooth regions, but nv becomes proportional to the minimum of the two nv’s
on either side of the face when the two differ significantly. Fig. 2 gives the motivation for using a harmonic
average. Physically, using a harmonic average preserves the robust result that the heat flux into a region
should go to zero as the density in that region goes to zero, as in a thermos bottle using a vacuum for insu-
lation. Harmonic averaging is also necessary for the method to be stable with the time step in Eq. (4). Instead,
if we use a simple mean, the stable time step condition becomes severe by a factor � max[ni+1,j,ni,j]/2min
[ni+1,j,ni,j], which can result in an unacceptably small time step for initial conditions with a large density
contrast. Physically, this is because the heat capacity is very small in low density regions, so even a tiny heat
This figure provides a motivation for using a harmonic average for nv. Consider a 1-D case with the temperatures and nv’s as
in the figure. Given T�1 and T1, and the nv’s at the faces, we want to calculate an average nv between cells �1 and 1. Assumption of

tant heat flux gives, q�1=2 ¼ q1=2 ¼ �q, i.e., �ðnvÞ�1=2ðT 0 � T�1Þ=Dx ¼ �ðnvÞ1=2ðT 1 � T 0Þ=Dx ¼ �nvðT 1 � T�1Þ=2Dx. This immediately
harmonic mean, which is weighted towards the smaller of the two arguments, for the interpolation nv.
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flux into that region causes rapid changes in temperature. Analogous expressions can be written for heat flux
in other directions.

2.2. Centered symmetric scheme

The notion of symmetric differencing was introduced in [6], where primary heat fluxes are located at the cell
corners, with
Fig. 3.
symbo
oT/oxj
qx;iþ1=2;jþ1=2 ¼ �nvbx bx
oT
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oT
oy

� �
; ð9Þ
where overline represents the interpolation of variables at the corner given by a simple arithmetic average,
bx ¼ ðbx;iþ1=2;j þ bx;iþ1=2;jþ1Þ=2; ð10Þ
by ¼ ðby;i;jþ1=2 þ by;iþ1;jþ1=2Þ=2; ð11Þ
oT=ox ¼ ðT iþ1;j þ T iþ1;jþ1 � T i;j � T i;jþ1Þ=2Dx; ð12Þ
oT=oy ¼ ðT i;jþ1 þ T iþ1;jþ1 � T i;j � T iþ1;jÞ=2Dy: ð13Þ
As before (and for the same reasons), a harmonic average is used for the interpolation of nv,
4

nv
¼ 1

ðnvÞi;j
þ 1

ðnvÞiþ1;j

þ 1

ðnvÞi;jþ1

þ 1

ðnvÞiþ1;jþ1

: ð14Þ
Analogous expressions can be written for qy,i+1/2,j+1/2. The harmonic average here is different from [6], who use
an arithmetic average. Ref. [6] is primarily interested in magnetic fusion applications, where density variations
are usually well resolved (shocks are usually not important in magnetic fusion) so arithmetic averaging will
work well. But there might be some magnetic fusion cases, such as instabilities in the edge region of a fusion
device, where there might be large density variations per grid cell and a harmonic average could be useful. All
of the test cases in [6] used a uniform density and so will not be affected by the choice of arithmetic or har-
monic average.

The heat fluxes located at the cell faces, qx,i+1/2,j and qy,i,j+1/2, to be used in Eq. (3) are given by an arith-
metic average,
qx;iþ1=2;j ¼ ðqx;iþ1=2;jþ1=2 þ qx;iþ1=2;j�1=2Þ=2; ð15Þ
qy;i;jþ1=2 ¼ ðqy;iþ1=2;jþ1=2 þ qy;i�1=2;jþ1=2Þ=2: ð16Þ
The symmetric method is unable to diffuse a temperature distributed in a chess-board pattern. The plus (+) and minus (�)
ls denote two unequal temperatures. The average of oT/oxji+1/2,j = (T+ � T�)/Dx and oT/oxji+1/2,j+1 = (T� � T+)/Dx to calculate

i+1/2,j+1/2 = oT/oxji+1/2,j + oT/oxji+1/2,j+1 vanishes, similarly oT/oyji+1/2,j+1/2 = 0.
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As demonstrated in [6], the symmetric heat flux satisfies the self adjointness property (equivalent to
_s� � �~q � ~rT P 0) at cell corners and has the desirable property that the perpendicular numerical diffusion
(v^,num) is independent of vi/v^ (see Fig. 6 in [6]). But, as we show later, both symmetric and asymmetric
schemes do not satisfy the crucial local property that heat must flow from higher to lower temperatures,
the violation of which may result in negative temperature with large temperature gradients.

The heat flux in the x-direction qx consists of two terms: the normal term qxx ¼ �nvb2
xoT=ox and the trans-

verse term qxy = �nvbxbyoT/oy. The asymmetric scheme uses a 2 point stencil to calculate the normal gradient
and a 6 point stencil to calculate the transverse gradient, as compared to the symmetric method that uses a 6
point stencil for both (hence the name symmetric). This makes the symmetric method less sensitive to the ori-
entation of coordinate system with respect to the field lines.

A problem with the symmetric method which is immediately apparent is its inability to diffuse away a chess-
board temperature pattern as oT=ox and oT =oy, located at the cell corners, vanish for this initial condition (see
Fig. 3).

3. Negative temperature with centered differencing

In this section we present two simple test problems that demonstrate that negative temperatures can arise
with both asymmetric and symmetric centered differencing.

3.1. Asymmetric method

Consider a 2 · 2 grid with a hot zone (T = 10) in the first quadrant and cold temperature (T = 0.1) in the rest,
as shown in Fig. 4. Magnetic field is uniform over the box with bx ¼ �by ¼ 1=

ffiffiffi
2
p

. Number density is a constant
equal to unity. Reflecting boundary conditions are used for temperature. Using the asymmetric scheme for heat
fluxes out of the grid point (i, j) (the third quadrant) gives, qx,i�1/2,j = qy,i,j�1/2 = 0, and qx,i+1/2,j = qy,i,j+1/

2 = (9.9/8)nv/Dx (where Dx = Dy is assumed). Thus, heat flows out of the grid point (i, j), which is already a
temperature minimum. This results in the temperature becoming negative. Fig. 4 shows the temperature in
the third quadrant vs. time for different methods. The asymmetric method gives negative temperature
(Ti,j < 0) for first few time steps, which eventually becomes positive. All other methods (except the one based
on entropy limiting) give positive temperatures at all times for this problem. Methods based on limited temper-
ature gradients will be discussed later. This test demonstrates that the asymmetric method may not be suitable
for problems with large temperature gradients because negative temperature results in numerical instabilities.

3.2. Symmetric method

The symmetric method does not give negative temperature with the test problem of the previous section. In
fact, the symmetric method gives the correct result for temperature with no numerical diffusion in the perpen-
dicular direction (zero heat flux out of the grid point (i, j), see Fig. 4). Other methods resulted in a temperature
increase at (i, j) because of perpendicular numerical diffusion. Here we consider a case where the symmetric
method gives negative temperature.

As before, consider a 2 · 2 grid with a hot zone (T = 10) in the first quadrant and cold temperature
(T = 0.1) in the rest; the only difference from the previous test problem is that the magnetic field lines are along
the x-axis, bx = 1 and by = 0 (see Fig. 5). Reflective boundary conditions are used for temperature, as before.
Since there is no temperature gradient along the field lines for the grid point (i, j), we do not expect the tem-
perature there to change. While all other methods give a stationary temperature in time, the symmetric method
results in a heat flux out of the grid (i, j) through the corner at (i � 1/2, j + 1/2). With the initial condition as
shown in Fig. 5, the only non-vanishing symmetric heat flux out of (i, j) is, qx,i�1/2,j+1/2 = �(9.9/2)nv/Dx. The
only non-vanishing face-centered heat flux entering the box through a face is qx,i�1/2,j = �(9.9/4)nv/Dx < 0;
i.e., heat flows out of (i, j) which is already a temperature minimum. This results in the temperature becoming
negative at (i, j), although at late times it becomes equal to the initial temperature at (i, j). This simple test
shows that the symmetric method can also give negative temperatures (and associated numerical problems)
in presence of large temperature gradients.
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Fig. 4. Test problem to show that the asymmetric method can result in negative temperature. Magnetic field lines are along the diagonal
with bx ¼ �by ¼ 1=

ffiffiffi
2
p

. With the asymmetric method heat flows out of the third quadrant which is already a temperature minimum,
resulting in a negative temperature Ti,j. However due to numerical perpendicular diffusion, at late times the temperature becomes positive
again. The temperature at (i, j) is shown for different methods: asymmetric (solid line), symmetric (dotted line), asymmetric and symmetric
with slope limiters (dashed line; both give the same result), and symmetric with entropy limiting (dot dashed line).
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4. Slope limited fluxes

As discussed earlier, the heat flux qx is composed of two terms: the normal qxx ¼ �nvb2
xoT =ox term, and the

transverse qxy = �nvbxbyoT/oy term. For the asymmetric method the discrete form of the term qxx ¼
�nvb2

xoT=ox has the same sign as �oT/ox, and hence guarantees that heat flows from higher to lower temper-
atures. However, qxy = �nvbxbyoT/oy can have an arbitrary sign, and can give rise to heat flowing in the
‘‘wrong’’ direction. We use slope limiters, analogous to those used for linear reconstruction of variables in
numerical simulation of hyperbolic systems [19,8], to ‘‘limit’’ the transverse terms. Both asymmetric and sym-
metric methods can be modified with slope limiters. The slope limited heat fluxes ensure that temperature
extrema are not accentuated. Thus, unlike the symmetric and asymmetric methods, slope limited methods
can never give negative temperatures.

4.1. Limiting the asymmetric method

Since the normal heat flux term qxx is naturally located at the face, no interpolation for oT/ox is required
for its evaluation. However, an interpolation at the x-face is required to evaluate oT =oy used in qxy (the term
with overlines in Eq. (5)). The arithmetic average used in Eq. (7) for oT =oy to calculate qxy was found to result
in heat flowing from lower to higher temperatures (see Fig. 4). To remedy this problem we use slope limiters to
interpolate temperature gradients in the transverse heat flux term.
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Fig. 5. Test problem for which the symmetric method gives negative temperature at (i, j). Magnetic field is along the x-direction, bx = 1
and by = 0. With this initial condition, all heat fluxes into (i, j) should vanish and the temperature Ti,j should not evolve. All methods
except the symmetric method (asymmetric, and slope and entropy limited methods) give a constant temperature Ti,j = 0.1 at all times. But
with the symmetric method, the temperature at (i, j) becomes negative due to the heat flux out of the corner (i � 1/2, j + 1/2). The
temperature Ti,j eventually becomes equal to the initial value of 0.1.
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Slope limiters are widely used in numerical simulations of hyperbolic equations (e.g., computational
gas dynamics; see [19,8]). Given the initial values for variables at grid centers, slope limiters (e.g., minmod,
van Leer, and Monotonized Central (MC)) are used to calculate the slopes of conservative piecewise
linear reconstructions in each grid cell. Limiters use the variable values in the nearest grid cells to come
up with slopes that ensure that no new extrema are created for the conserved variables along the charac-
teristics, a property of hyperbolic equations. Similarly, we use slope limiters to interpolate temperature
gradients in the transverse heat flux term so that unphysical oscillations do not arise at temperature
extrema.

The slope limited asymmetric heat flux in the x-direction is still given by Eq. (5), with the same oT/ox as in
the asymmetric method, but a slope limited interpolation for the transverse temperature gradient oT=oy, given
by
oT
oy

����
iþ1=2;j

¼ L L
oT
oy

����
i;j�1=2

;
oT
oy

����
i;jþ1=2

" #
; L

oT
oy

����
iþ1;j�1=2

;
oT
oy

����
iþ1;jþ1=2

" #( )
; ð17Þ
where L is a slope limiter like minmod, van Leer, or Monotonized Central (MC) limiter [8]; e.g., the MC lim-
iter is given by
MCða; bÞ ¼ minmod 2minmodða; bÞ; aþ b
2

� �
; ð18Þ
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where
minmodða; bÞ ¼
minða; bÞ if a; b > 0;

maxða; bÞ if a; b < 0;

0 if ab 6 0:

8><
>:
A slope limiter weights the interpolation towards the argument smallest in magnitude, if the arguments differ
by too much, and returns a zero if the two arguments are of opposite signs. An analogous expression for the
transverse temperature gradient at the y-face, oT=ox, is used to evaluate the heat flux qy. Interpolation similar
to the asymmetric method is used for all other variables (Eqs. (6) and (8)).

4.2. Limiting the symmetric method

In the symmetric method, primary heat fluxes in both directions are located at the cell corners (see Eq. (9)).
Temperature gradients in both directions have to be interpolated at the corners. Thus, to ensure that temper-
ature extrema are not amplified with the symmetric method, both oT =ox and oT=oy need to be limited.

The face-centered qxx,i+1/2,j is calculated by averaging qxx from the adjacent corners, which are given by the
following slope limited expressions:
qN
xx;iþ1=2;jþ1=2 ¼ �nvb2

xL2
oT
ox

����
iþ1=2;j

;
oT
ox

����
iþ1=2;jþ1

" #
; ð19Þ

qS
xx;iþ1=2;j�1=2 ¼ �nvb2

xL2
oT
ox

����
iþ1=2;j

;
oT
ox

����
iþ1=2;j�1

" #
; ð20Þ
where N and S superscripts indicate the north-biased and south-biased heat fluxes. The face-centered heat flux
used in Eq. (3) is qxx;iþ1=2;j ¼ ðqN

xx;iþ1=2;jþ1=2 þ qS
xx;iþ1=2;j�1=2Þ=2; the other interpolated quantities (indicated with an

overline) are the same as in Eq. (9). The limiter L2 which is different from standard slope limiters is defined as
L2ða; bÞ ¼
ðaþ bÞ=2 if minðaa; a=aÞ < ðaþ bÞ=2 < maxðaa; a=aÞ;
minðaa; a=aÞ if ðaþ bÞ=2 6 minðaa; a=aÞ;
maxðaa; a=aÞ if ðaþ bÞ=2 P maxðaa; a=aÞ;

8><
>: ð21Þ
where 0 < a < 1 is a parameter; this reduces to a simple averaging if the temperature is smooth, while restrict-
ing the interpolated temperature ðoT =oxÞ to not differ too much from oT/oxji+1/2,j (and be of the same sign).
We choose a = 3/4 for all of the results in this paper. Note that the L2 limiter is not symmetric with respect to
its arguments. It ensures that qxx,i+1/2,j±1/2 is of the same sign as �oT/oxji+1/2,j; i.e., the interpolated normal
heat flux is from higher to lower temperatures. This interpolation will be able to diffuse the chess-board pat-
tern in Fig. 3. The transverse temperature gradient is limited in a way similar to the asymmetric method; the
temperature gradient oT =oyjiþ1=2;j is still given by Eq. (17). Thus if a = 1, the limited symmetric method be-
comes somewhat similar to the limited asymmetric method (though with differences in the interpolation of
the magnetic field direction and of nv).

5. Limiting with the entropy-like source function

If the entropy-like source function, which we define as _s� ¼ �~q � ~rT (see Appendix A to see how this is dif-
ferent from the entropy function) is positive everywhere, heat is guaranteed to flow from higher to lower tem-
peratures. For the symmetric method, _s� evaluated at the cell corners is positive definite, but this need not be
true for interpolations at the cell faces; thus heat may flow from lower to higher temperatures. An entropy-like
condition can be applied at all face pairs to limit the transverse heat flux terms (qxy and qyx), such that
_s� ¼ �qx;iþ1=2;j

oT
ox

����
iþ1=2;j

� qy;i;jþ1=2

oT
oy

����
i;jþ1=2

P 0: ð22Þ
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The limiter L2 is used to calculate the normal gradients qxx and qyy at the faces, as in the slope limited
symmetric method (see Section 4.2). The use of L2 ensures that �qxx,i+1/2,joT/oxji+1/2,j P 0, and only the
transverse terms qxy and qyx need to be reduced to satisfy Eq. (22). That is, if on evaluating _s� at all four
face pairs the entropy-like condition (Eq. (22)) is violated, the transverse terms are reduced to make _s�

vanish. The attractive feature of the entropy limited symmetric method is that it reduces to the symmetric
method (which has the smallest numerical diffusion of all the methods; see Fig. 9) when Eq. (22) is sat-
isfied. The hope is that limiting of transverse terms may prevent oscillations with large temperature
gradients.

The problem with entropy limiting, unlike the slope limited methods, is that it does not guarantee that
numerical oscillations at large temperature gradients will be absent (e.g, see Figs. 4 and 7). For example,
when oT/oxji+1/2,j = oT/oyji,j+1/2 = 0, Eq. (22) is satisfied for arbitrary heat fluxes qx,i+1/2,j and qy,i,j+1/2. In
such a case, transverse heat fluxes qxy and qyx can cause heat to flow in the ‘‘wrong’’ direction, causing
unphysical oscillations at temperature extrema. However, this unphysical behavior occurs only for a few
time steps, after which the oscillations are damped. The result is that the overshoots are not as pro-
nounced and quickly decay with time, unlike in the asymmetric and symmetric methods (see Figs. 6
and 7). Although temperature extrema can be accentuated by the entropy limited method, early on one
can choose sufficiently small time steps to ensure that temperature does not become negative; this is equiv-
alent to saying that the entropy limited method will not give overshoots at late times (see Fig. 7 and
Tables 1–4). This trick will not work for the centered symmetric and asymmetric methods where temper-
atures can be negative even at late times (see Fig. 7).

To guarantee that temperature extrema are not amplified, in addition to entropy limiting at all points, one
can also use slope limiting of transverse temperature gradients at extrema. This results in a method that does
not amplify the extrema, but is more diffusive compared to just entropy limiting (see Fig. 9). Because of the
simplicity of slope limited methods and their desirable mathematical properties (discussed in the next section),
they are preferred over the cumbersome entropy limited methods.
6. Mathematical properties

In this section we prove that the slope limited fluxes satisfy the physical requirement that temperature
extrema are not amplified. Also discussed are global and local properties related to the entropy-like condition
_s� ¼ �~q � ~rT P 0.
6.1. Behavior at temperature extrema

Slope limiting of both asymmetric and symmetric methods guarantees that temperature extrema are not
amplified further, i.e., the maximum temperature does not increase and the minimum temperature does not
decrease, as required physically. This ensures that the temperature is always positive and numerical problems
because of imaginary sound speed do not arise. The normal heat flux in the asymmetric method ð�nvb2

xoT=oxÞ
and the L2 limited normal heat flux term in the symmetric method (Eqs. (19) and (20)) allows the heat to flow
only from higher to lower temperatures. Thus the terms responsible for unphysical behavior at temperature
extrema are the transverse heat fluxes qxy and qyx. Slope limiters ensure that the transverse heat terms vanish
at extrema and heat flows down the temperature gradient at those grid points.

The operator L(L(a,b),L(c,d)), where L is a slope limiter like minmod, van Leer, or MC, is symmetric with
respect to all its arguments, and hence can be written as L(a,b,c,d). For the slope limiters considered here
(minmod, van Leer, and MC), L(a,b,c,d) vanishes unless all four arguments a, b, c, d have the same sign.
At a local temperature extremum (say at (i, j)), the x- (and y-) face-centered slopes oT/oyji,j+1/2 and oT/
oyji,j�1/2 (and oT/oxji+1/2,j and oT/oxji�1/2,j) are of opposite signs, or at least one of them is zero. This ensures
that the slope limited transverse temperature gradients (oT=oy and oT =ox) vanish (from Eq. (17)). Thus, the
heat fluxes are qx;i�1=2;j ¼ �nvbx

2oT=oxji�1=2;j and qy;i;j�1=2 ¼ �nvby
2oT=oyji;j�1=2 at the temperature extrema,

which are always down the temperature gradient. This ensures that temperature never decreases (increases)
at a temperature minimum (maximum), and negative temperatures are avoided.



Fig. 6. The temperature at t = 200 for different methods initialized with the ring diffusion problem on a 400 · 400 grid. Shown from left to
right and top to bottom are the temperatures for: asymmetric, symmetric, asymmetric-MC, symmetric-MC, entropy limited symmetric,
and minmod methods. Both asymmetric and symmetric methods give temperatures below 10 (the initial minimum temperature) at late
times. The result with a minmod limiter is very diffusive. The slope limited symmetric method is less diffusive than the slope limited
asymmetric method. Entropy limited method does not show non-monotonic behavior at late times, but is diffusive compared to the better
slope limited methods.
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Fig. 7. Minimum temperature over the whole box as a function of time for the ring diffusion test problem: symmetric (dashed line),
asymmetric (solid line), and entropy limited symmetric (dot dashed line) methods are shown. Initially the temperature of the hot
patch is 10 and the background is at 0.1. Both asymmetric and symmetric methods result in negative temperature, even at late times.
The non-monotonic behavior with the entropy limited method is considerably less pronounced; the minimum temperature quickly
becomes equal to the initial minimum 0.1. The slope limited heat fluxes maintain the minimum temperature at 0.1 at all times, as
required physically.

Table 1
Diffusion in circular field lines: 50 · 50 grid

Method L1 error L2 error L1 error Tmax Tmin v^,num/vi

Asymmetric 0.0324 0.0459 0.0995 10.0926 9.9744 0.0077
Asymmetric minmod 0.0471 0.0627 0.1195 10.0410 10 0.0486
Asymmetric MC 0.0358 0.0509 0.1051 10.0708 10 0.0127
Asymmetric van Leer 0.0426 0.0574 0.1194 10.0519 10 0.0238
Symmetric 0.0114 0.0252 0.1425 10.2190 9.9544 0.00028
Symmetric entropy 0.0333 0.0477 0.0997 10.0754 10 0.0088
Symmetric entropy extrema 0.0341 0.0487 0.1010 10.0751 10 0.0101
Symmetric minmod 0.0475 0.0629 0.1322 10.0406 10 0.0490
Symmetric MC 0.0289 0.0453 0.0872 10.0888 10 0.0072
Symmetric van Leer 0.0438 0.0585 0.1228 10.0519 10 0.0238

The errors are based on the assumption that the initial hot patch has diffused to a uniform temperature (T = 10.1667) in the ring
0.5 < r < 0.7, and T = 10 outside it.

Table 2
Diffusion in circular field lines: 100 · 100 grid

Method L1 error L2 error L1 error Tmax Tmin v^,num/vi

Asymmetric 0.0256 0.0372 0.0962 10.1240 9.9859 0.0030
Asymmetric minmod 0.0468 0.0616 0.1267 10.0439 10 0.0306
Asymmetric MC 0.0261 0.0405 0.0907 10.1029 10 0.0040
Asymmetric van Leer 0.0358 0.0502 0.1002 10.0741 10 0.0971
Symmetric 0.0079 0.0173 0.1206 10.2276 9.9499 4.1 · 10�5

Symmetric entropy 0.0285 0.0420 0.0881 10.0961 10 0.0042
Symmetric entropy extrema 0.0291 0.0425 0.0933 10.0941 10 0.0041
Symmetric minmod 0.0471 0.0618 0.1275 10.0433 10 0.0305
Symmetric MC 0.0123 0.0252 0.1133 10.1406 10 0.00084
Symmetric van Leer 0.0374 0.0514 0.1038 10.0697 10 0.0104
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Table 3
Diffusion in circular field lines: 200 · 200 grid

Method L1 error L2 error L1 error Tmax Tmin v^,num/vi

Asymmetric 0.0165 0.0281 0.0949 10.1565 9.9878 0.0012
Asymmetric minmod 0.0441 0.0585 0.1214 10.0511 10 0.0191
Asymmetric MC 0.0161 0.0289 0.0930 10.1397 10 0.0015
Asymmetric van Leer 0.0264 0.0407 0.0928 10.1006 10 0.0035
Symmetric 0.0052 0.0132 0.1125 10.2216 9.9509 1.9 · 10�5

Symmetric entropy 0.0256 0.0385 0.0959 10.1103 10 0.0032
Symmetric entropy extrema 0.0260 0.0391 0.0954 10.1074 10 0.0032
Symmetric minmod 0.0444 0.0588 0.1219 10.0503 10 0.0192
Symmetric MC 0.0053 0.0160 0.0895 10.1676 10 0.0002
Symmetric van Leer 0.0281 0.0426 0.0901 10.0952 10 0.0038

Table 4
Diffusion in circular field lines: 400 · 400 grid

Method L1 error L2 error L1 error Tmax Tmin v^,num/vi

Asymmetric 0.0118 0.0234 0.0866 10.1810 9.9898 5.9 · 10�4

Asymmetric minmod 0.0399 0.0539 0.1120 10.0629 10 0.0115
Asymmetric MC 0.0102 0.0230 0.0894 10.1708 10 6.8 · 10�4

Asymmetric van Leer 0.0167 0.0290 0.1000 10.1321 10 0.0013
Symmetric 0.0033 0.0104 0.1112 10.2196 9.9504 8.4 · 10�6

Symmetric entropy 0.0252 0.0384 0.0969 10.1144 10 0.0027
Symmetric entropy extrema 0.0253 0.0383 0.0958 10.1135 10 0.0026
Symmetric minmod 0.0401 0.0541 0.1124 10.0622 10 0.0116
Symmetric MC 0.0032 0.0122 0.0896 10.1698 10 6.5 · 10�5

Symmetric van Leer 0.0182 0.0307 0.1026 10.1260 10 0.0013
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6.2. The entropy-like condition, _s� ¼ �~q � ~rT P 0

If the number density n remains constant in time, then multiplying Eq. (1) with T and integrating over all
space gives
1

ðc� 1Þ
o

ot

Z
nT 2 dV ¼ �

Z
T ~r �~qdV ¼

Z
~q � ~rT dV ¼ �

Z
nvjrkT j2 dV 6 0; ð23Þ
assuming that the surface contributions vanish. This analytic constraint implies that volume averaged temper-
ature fluctuations cannot increase in time. Locally it gives the entropy-like condition _s� ¼ �~q � ~rT P 0, imply-
ing that heat always flows from higher to lower temperatures.

Ref. [6] has shown that the symmetric method satisfies _s� ¼ �~q � ~rT P 0 at cell corners. The entropy-like
function _s� evaluated at (i + 1/2, j + 1/2) with the symmetric method is
_s�iþ1=2;jþ1=2 ¼ �qx;iþ1=2;jþ1=2

oT
ox

����
iþ1=2;jþ1=2

� qy;iþ1=2;jþ1=2

oT
oy

����
iþ1=2;jþ1=2

: ð24Þ
Using the symmetric heat fluxes (Eq. (9)) the entropy-like function becomes,
_s� ¼ nvbx
2 oT

ox

����
����
2

þ nvby
2 oT

oy

����
����
2

þ 2nvbxby
oT
ox

oT
oy
;¼ nv bx

oT
ox
þ by

oT
oy

� �2

P 0; ð25Þ
and integration over the whole space implies Eq. (23). Although the entropy-like condition is satisfied by the
symmetric method at grid corners (both locally and globally), this condition is not sufficient to guarantee pos-
itivity of temperature at cell centers, as we demonstrate in Section 3.2. Also notice that the modification of the
symmetric method to satisfy the entropy-like condition at face pairs (see Section 5) does not cure the problem
of negative temperatures (see Fig. 4). Thus, a method which satisfies the entropy-like condition
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ð_s� ¼ �~q � ~rT P 0Þ interpolated at some point does not necessarily satisfy it everywhere, implying that
unphysical oscillations in the presence of large temperature gradients may arise even if the interpolated entro-
py-like condition holds.

With an appropriate interpolation, the asymmetric method and the slope limited asymmetric methods can
be modified to satisfy the global entropy-like condition _S� ¼ �

R
~q � ~rT dV =V P 0. Consider
_S� ¼ �1

NxNy

X
i;j

qx;iþ1=2;j
oT
ox

����
iþ1=2;j

þ qy;i;jþ1=2

oT
oy

����
i;jþ1=2

" #
; ð26Þ
where Nx and Ny are the number of grid points in each direction. Substituting the form of asymmetric heat
fluxes,
_S� ¼ 1

NxNy

X
i;j

nvb2
x

oT
ox

����
����
2

 !
iþ1=2;j

þ nvb2
y

oT
oy

����
����
2

 !
i;jþ1=2

þ nvbxby
oT
oy

� �
iþ1=2;j

oT
ox

����
iþ1=2;j

2
4

þ nvbxby
oT
ox

� �
i;jþ1=2

oT
oy

����
i;jþ1=2

#
; ð27Þ
where overlines represent appropriate interpolations. We define
Gx;iþ1=2;j ¼
ffiffiffiffiffiffiffiffiffi
ðnvÞ

p
iþ1=2;jbx;iþ1=2;j

oT
ox

����
iþ1=2;j

; ð28Þ

Gy;i;jþ1=2 ¼
ffiffiffiffiffiffiffiffiffi
ðnvÞ

p
i;jþ1=2by;i;jþ1=2

oT
oy

����
i;jþ1=2

; ð29Þ

Gy;iþ1=2;j ¼
ffiffiffiffiffi
nv
p

by
oT
oy

����iþ1=2;j; ð30Þ

Gx;i;jþ1=2 ¼
ffiffiffiffiffi
nv
p

bx
oT
ox

����i;jþ1=2: ð31Þ
In terms of G’s, Eq. (27) can be written as
_S� ¼ 1

NxNy

X
i;j

G2
x;iþ1=2;j þ G2

y;i;jþ1=2 þ Gx;iþ1=2;jGy;iþ1=2;j þ Gx;i;jþ1=2Gy;i;jþ1=2

h i
: ð32Þ
A lower bound on _S� is obtained by assuming the cross terms to be negative, i.e.,
_S� P
1

NxN y

X
i;j

G2
x;iþ1=2;j þ G2

y;i;jþ1=2 � Gx;iþ1=2;jGy;iþ1=2;j

�� ��� Gx;i;jþ1=2Gy;i;jþ1=2

�� ��h i
: ð33Þ
Now define Gy;iþ1=2;j and Gx;i;jþ1=2 as follows (the following interpolation is necessary for the proof to hold):
Gx;i;jþ1=2 ¼ LðGx;iþ1=2;j;Gx;i�1=2;j;Gx;iþ1=2;jþ1;Gx;i�1=2;jþ1Þ; ð34Þ
Gy;iþ1=2;j ¼ LðGy;i;jþ1=2;Gy;i;j�1=2;Gy;iþ1;jþ1=2;Gy;iþ1;j�1=2Þ; ð35Þ
where L is an arithmetic average (as in centered asymmetric method) or a slope limiter (e.g., minmod, van
Leer, or MC) which satisfies the property that jL(a,b,c,d)j 6 (jaj + jbj + jcj + jdj)/4. Thus,
_S� P
1

NxN y

X
i;j

G2
x;iþ1=2;j þ G2

y;i;jþ1=2 �
1

4
½jGx;iþ1=2;jGy;i;jþ1=2j þ jGx;iþ1=2;jGy;i;j�1=2j þ jGx;iþ1=2;jGy;iþ1;jþ1=2j

þ jGx;iþ1=2;jGy;iþ1;j�1=2j þ jGy;i;jþ1=2Gx;iþ1=2;jj þ jGy;i;jþ1=2Gx;i�1=2;jj þ jGy;i;jþ1=2Gx;iþ1=2;jþ1j
þ jGy;i;jþ1=2Gx;i�1=2;jþ1j�: ð36Þ
Shifting the dummy indices and combining various terms give,
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_S� P
1

N xNy

X
i;j

G2
x;iþ1=2;j þ G2

y;i;jþ1=2 �
1

2
½jGx;iþ1=2;jGy;i;jþ1=2j þ jGx;iþ1=2;jGy;i;j�1=2j þ jGx;iþ1=2;jGy;iþ1;jþ1=2j

þ jGx;iþ1=2;jGy;iþ1;j�1=2j� ¼
1

4N xNy

X
i;j

½ðjGx;iþ1=2;jj � jGy;i;jþ1=2jÞ2 þ ðjGx;iþ1=2;jj � jGy;i;j�1=2jÞ2

þ ðjGx;iþ1=2;jj � jGy;iþ1;jþ1=2jÞ2 þ ðjGx;iþ1=2;jj � jGy;iþ1;j�1=2jÞ2�P 0: ð37Þ
Thus, an appropriate interpolation for the asymmetric and the slope limited asymmetric methods results in a
scheme that satisfies the global entropy-like condition. A variation of this proof can be used to prove the glo-
bal entropy condition _S P 0 by multiplying Eq. (1) with 1/T instead of T (see Appendix A), although the form
of interpolation would need to be modified slightly. It is comforting that introducing a limiter to the asymmet-
ric method does not break the global entropy-like condition. However, it is important to remember that the
entropy-like (or entropy) condition satisfied at some point does not guarantee a local heat flow in the correct
direction; thus it is necessary to use slope limiters at temperature extrema to avoid temperature oscillations.

7. Further tests

We use test problems discussed in [10,15] to compare different methods. The first test problem (taken from
[10]) initializes a hot patch in circular field lines; ideally the hot patch should diffuse only along the field lines,
but perpendicular numerical diffusion causes some cross-field thermal conduction. Unlike the limited methods,
both asymmetric and symmetric methods show temperature oscillations at the temperature discontinuity. The
second test problem (from [15]) includes a source term and an explicit perpendicular diffusion coefficient (v^).
The steady state temperature gives a measure of the perpendicular numerical diffusion v^, num.

7.1. Diffusion of a hot patch in circular magnetic field

The circular diffusion test problem was proposed in [10]. A hot patch surrounded by a cooler background is
initialized in circular field lines; the temperature drops discontinuously across the patch boundary. At late
times, we expect the temperature to become uniform (and higher) in a ring along the magnetic field lines.
The computational domain is a [�1,1] · [�1,1] Cartesian box. The initial temperature distribution is given by
T ¼ 12 if 0:5 < r < 0:7 and 11
12

p < h < 13
12

p;

10 otherwise;

�
ð38Þ
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and tanh = y/x. Fixed circular magnetic field lines centered at the origin are initialized

and number density (n) is set to unity. Reflective boundary conditions are used for temperature; magnetic field
and conduction vanishes outside r = 1. The parallel conduction coefficient v = 0.01; there is no explicit perpen-
dicular diffusion (v^ = 0). We evolve the anisotropic conduction equation (3) till time = 200, by when we ex-
pect the temperature to be almost uniform along the circular ring 0.5 < r < 0.7. In steady state (at late times),
energy conservation implies that the ring temperature should be 10.1667, while the temperature outside the
ring should be maintained at 10.

Fig. 6 shows the temperature distribution for different methods at time = 200. All methods result in a
higher temperature in the annulus r 2 [0.5,0.7]. The limited schemes show larger perpendicular diffusion
(see Tables 1–4 which give errors, minimum and maximum temperatures, and numerical perpendicular diffu-
sion at time = 200; also see Fig. 8) compared to the symmetric and asymmetric schemes. The perpendicular
numerical diffusion (v^,num) scales with the parallel diffusion coefficient v for all methods. Notice that for Sovi-
nec’s test problem (discussed in the next section) where temperature is smooth and an explicit v^ is present,
perpendicular numerical diffusion for the symmetric method does not increase with increasing vi.

The minmod limiter is much more diffusive than van Leer and MC limiters. Both symmetric and asymmet-
ric methods give a minimum temperature below the initial minimum of 10, even at late times. At late times the
symmetric method gives a temperature profile full of non-monotonic oscillations (Fig. 6). Although the slope
limited fluxes are more diffusive than the symmetric and asymmetric methods, they never show undershoots
below the minimum temperature. The entropy limited symmetric method gives temperature undershoots at
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early times which are damped quickly, and the minimum temperature is still 10 at late times (see Tables 1–4
and Fig. 7). Entropy limiting combined with a slope limiter at temperature extrema behaves similar to the
slope limiter based schemes.

Strictly speaking, a hot ring surrounded by a cold background is not a steady solution for the ring diffusion
problem. Temperature in the ring will diffuse in the perpendicular direction (because of perpendicular numer-
ical diffusion, although very slowly) until the whole box is at a constant temperature. A rough estimate for
time averaged perpendicular numerical diffusion Æv^,numæ follows from Eq. (1),
hv?;numi ¼
R
ðT f � T iÞdVR
dtð
R
r2T dV Þ

; ð39Þ
where the space integral is taken over the hot ring 0.5 < r < 0.7, and Ti and Tf are the initial and final temper-
ature distributions in the ring. Fig. 8 plots the numerical perpendicular diffusion (using Eq. (39)) for the ring
diffusion problem at different resolutions (see Tables 1–4). The estimates for perpendicular diffusion agree
roughly with the more accurate calculations using Sovinec’s test problem described in the next section (com-
pare Figs. 8 and 9); as with Sovinec’s test, the symmetric method is the least diffusive. Table 5 lists the con-
vergence rate of v^,num for the ring diffusion problem evolved with different methods.

To study the very long time behavior of different methods (in particular to check whether the symmetric
and asymmetric methods give negative temperatures even at very late times) we initialize the same problem
with the hot patch at 10 and the cooler background at 0.1. Fig. 7 shows the minimum temperature with time
for the symmetric, asymmetric, and entropy limited symmetric methods; slope limited methods give the correct
result for the minimum temperature (Tmin = 0.1) at all times. With a large temperature contrast, both symmet-
ric and asymmetric methods give negative minimum temperature even at late times. Such points where tem-
perature becomes negative, when coupled with MHD equations, can give numerical instabilities because of an
imaginary sound speed. The minimum temperature with the entropy limited symmetric method shows small
undershoots at early times which are damped quickly and the minimum temperature is equal to the initial min-
imum (0.1) after time = 1.

7.2. Convergence studies: measuring v^,num

We use the steady state test problem described in [15] to measure the perpendicular numerical diffusion
coefficient, v^,num. The computational domain is a unit square [�0.5, 0.5] · [�0.5, 0.5], with vanishing
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Fig. 9. A measure of perpendicular numerical diffusion v?;num ¼ jT�1ð0; 0Þ � T�1
iso j for vi/v^ = 10 (top) and vi/v^ = 100 (bottom), using

different methods. The different schemes are: asymmetric (n), asymmetric with minmod (,), asymmetric with MC (h), asymmetric with
van Leer (*), symmetric (+), symmetric with entropy limiting (}), symmetric with entropy and extrema limiting (.), symmetric with
minmod (w), symmetric with MC (·), and symmetric with van Leer limiter (/). The numerical diffusion scales with vi for all methods
except the symmetric differencing [6].

Table 5
Asymptotic slopes for convergence of v^,num in the ring diffusion test problem

Method Slope

Asymmetric 1.066
Asymmetric minmod 0.741
Asymmetric MC 1.142
Asymmetric van Leer 1.479
Symmetric 1.181
Symmetric entropy 0.220
Symmetric entropy extrema 0.282
Symmetric minmod 0.735
Symmetric MC 1.636
Symmetric van Leer 1.587
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temperature at the boundaries; number density is set to unity. The source term Q = 2p2 cos(px) cos(py) that
drives the lowest eigenmode of the temperature distribution is added to Eq. (1). The anisotropic diffusion
equation with a source term possesses a steady state solution. The equation that we evolve is
oe
ot
¼ � ~r �~qþ Q: ð40Þ



Table 6
Asymptotic slopes for convergence of error v?;num ¼j T�1ð0; 0Þ � T�1

isoð0; 0Þ j
Method vk=v? ¼ 10 vk=v? ¼ 100

Asymmetric 1.802 1.770
Asymmetric minmod 0.9674 0.9406
Asymmetric MC 1.9185 1.9076
Asymmetric van Leer 1.706 1.728
Asymmetric 1.726 1.762
Asymmetric entropy 2.407 2.966
Symmetric entropy extrema 1.949 1.953
Symmetric minmod 0.9155 0.8761
Symmetric MC 1.896 1.9049
Symmetric van Leer 1.6041 1.6440
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The magnetic field is derived from the flux function of the form w � cos(px)cos(py); this results in concentric
field lines centered at the origin. The temperature eigenmode driven by the source function Q is constant along
the field lines. The steady state solution for the temperature is T ðx; yÞ ¼ v�1

? cosðpxÞ cosðpyÞ, independent of vi.
The perpendicular diffusion coefficient v^ is chosen to be unity, thus T�1(0, 0) gives a measure of total perpen-
dicular diffusion: the sum of v^ (the explicit perpendicular diffusion) and v^,num (the perpendicular numerical
diffusion).

To account for v^,num due to the errors in discretization of the parallel diffusion operator, we calculate
v?;num ¼ jT�1ð0; 0Þ � T�1

isoð0; 0Þ j, where Tiso(0, 0) is the central temperature calculated by the discretized equa-
tions at the same resolution in the isotropic limit vi = v^. The convention that we use is slightly different (and
more accurate) than that used in previous work, v^,num = jT�1(0,0) � 1j, which effectively assumed that iso-
tropic diffusion gives Tiso(0,0) = 1 exactly.

Fig. 9 shows the perpendicular numerical diffusivity v?;num ¼j T�1ð0; 0Þ � T�1
isoð0; 0Þ j for vk=v? ¼ 10, 100

using different methods. The perpendicular diffusion (v^,num) for all methods except the symmetric method
increases linearly with vi. This property has been emphasized by [6] to motivate the use of symmetric differ-
encing for fusion applications, which require the perpendicular numerical diffusion to be small for
vi/v^ � 109. The slope limited methods (with a reasonable resolution) are not suitable for the applications
which require vi/v^	 104; this rules out the fusion applications mentioned in [6,15]. However, only the slope
limited methods give physically appropriate behavior at temperature extrema, thereby avoiding negative tem-
peratures in presence of sharp temperature gradients. The error (perpendicular numerical diffusion,
v?;num ¼ jT�1ð0; 0Þ � T�1

isoð0; 0Þj) for most methods except the ones based on minmod limiter, show a roughly
second order convergence (see Table 6).

8. Conclusions

It is shown that simple centered differencing of anisotropic conduction can result in negative temperatures
in the presence of large temperature gradients. We present simple test problems where asymmetric and sym-
metric methods give heat flowing from lower to higher temperatures, leading to negative temperatures at some
grid points. Negative temperature results in numerical instabilities, as the sound speed becomes imaginary.
Numerical schemes based on slope limiters are proposed to solve this problem.

The methods developed here will be useful in numerical studies of hot, dilute, anisotropic astrophysical
plasmas [10,14], where large temperature gradients may be common. Anisotropic conduction can play a cru-
cial role in determining the global structure of hot, non-radiative accretion flows (e.g., [1,10,14]). Therefore, it
will be useful to extend ideal MHD codes used in previous global numerical studies (e.g., [18]) to include aniso-
tropic conduction. Slope limiting methods that prevent negative temperature can be particularly helpful in glo-
bal disk simulations where there are huge temperature gradients that occur between a hot, dilute corona and
the cold, dense disk. The slope limited method with an MC limiter appears to be the most accurate method
that does not result in unphysical behavior with large temperature gradients (see Figs. 6 and 8). While we have
tried a number of possible variations other than the ones described here, there might be ways to further
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improve these algorithms. Future work might explore other combinations of limiters, or limiters on combined
fluxes instead of limiting the normal and transverse components independently, or might explore using higher-
order information to reduce the effects of limiters near extrema while preserving physical behavior.

Although the slope and entropy limited methods in the present form are not suitable for fusion applications
that require accurate resolution of perpendicular diffusion for huge anisotropy (vi/v^ � 109), they are appro-
priate for astrophysical applications with large temperature gradients. A relatively small anisotropy of thermal
conduction may be sufficient to study the effects of anisotropic thermal conduction [10]. The primary advan-
tage of the limited methods is their robustness in presence of large temperature gradients. Apart from the sim-
ulations of dilute astrophysical plasmas with large temperature gradients (e.g., magnetized collisionless
shocks), monotonicity-preserving methods may find use in diverse fields where anisotropic diffusion is impor-
tant, e.g., image processing, biological transport, and geological systems.
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Appendix A. Entropy condition for an ideal gas

The entropy for an ideal gas is given by S = nVk ln(T1/(c�1)/n) + const., where n is the number density, V
the volume, T the temperature, and c the ratio of specific heats (= 5/3 for a 3-D mono-atomic gas). The change
in entropy that results from adding an amount of heat dQ to a uniform gas is
dS ¼ nVk
c� 1

dT
T
¼ dQ

T
:

We measure temperature in energy units, so k = 1. The rate of change of entropy of a system where number
density and temperature can vary in space (density is assumed to be constant in time) is given by
_S � oS
ot
¼ �

Z
dV

~r �~q
T
¼ �

Z
dV

~q � ~rT

T 2
¼
Z

dVnv
jrkT j2

T 2
P 0; ðA:1Þ
where we use an anisotropic heat flux,~q ¼ �nv~b~b � ~rT , and the integral is evaluated over the whole space with
the boundary contributions assumed to vanish. The local entropy function defined as _s ¼ �~q � ~rT=T 2 can be
integrated to calculate the rate of change of total entropy of the system.

In the paper we use a related function (the entropy-like function _s�) defined as _s� � �~q � ~rT to limit the
symmetric methods using face-pairs, and to prove some properties of different anisotropic diffusion schemes.
The condition �~q � ~rT P 0 ensures that heat always flows from higher to lower temperatures.

References

[1] S.A. Balbus, Convective and rotational stability of a dilute plasma, Astrophys. J. 562 (2001) 909.
[2] P.J. Basser, D.K. Jones, Diffusion-tensor MRI: theory, experimental design, and data analysis—a technical review, NMR Biomed. 15

(2002) 456.
[3] S.I. Braginskii, in: M.A. Leontovich (Ed.), Reviews of Plasma Physics, vol. 1, Consultants Bureau, New York, 1965.
[4] V. Caselles, J.M. Morel, G. Sapiro, A. Tannenbaum, Introduction to the special issue on partial differential equations and geometry-

driven diffusion in image processing and analysis, IEEE Trans. Image Process. 7 (1998) 269.
[5] Z. Dian-lin et al., Anisotropic thermal conductivity of the 2D single quasicrystals: Ali65Ni20Co15 and Al62Si3Cu20Co15, Phys. Rev.

Lett. 66 (1991) 2778.
[6] S. Günter, Q. Yu, J. Kruger, K. Lackner, Modelling of heat transport in magnetised plasmas using non-aligned coordinates,

J. Comput. Phys. 209 (2005) 354.
[7] J. Hyman, J. Morel, M. Shashkov, S. Steinberg, Mimetic finite difference methods for diffusion equations, Comput. Geosci. 6 (2002)

333.
[8] R.J. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002.
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